Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification
نویسندگان
چکیده
This paper proposes a knowledge-guided fashion network to solve the problem of visual fashion analysis, e.g., fashion landmark localization and clothing category classification. The suggested fashion model is leveraged with high-level human knowledge in this domain. We propose two important fashion grammars: (i) dependency grammar capturing kinematics-like relation, and (ii) symmetry grammar accounting for the bilateral symmetry of clothes. We introduce Bidirectional Convolutional Recurrent Neural Networks (BCRNNs) for efficiently approaching message passing over grammar topologies, and producing regularized landmark layouts. For enhancing clothing category classification, our fashion network is encoded with two novel attention mechanisms, i.e., landmark-aware attention and category-driven attention. The former enforces our network to focus on the functional parts of clothes, and learns domain-knowledge centered representations, leading to a supervised attention mechanism. The latter is goal-driven, which directly enhances task-related features and can be learned in an implicit, top-down manner. Experimental results on large-scale fashion datasets demonstrate the superior performance of our fashion grammar network.
منابع مشابه
Fashion Landmark Detection in the Wild
Visual fashion analysis has attracted many attentions in the recent years. Previous work represented clothing regions by either bounding boxes or human joints. This work presents fashion landmark detection or fashion alignment, which is to predict the positions of functional key points defined on the fashion items, such as the corners of neckline, hemline, and cuff. To encourage future studies,...
متن کاملConvolutional Neural Networks for Fashion Classification and Object Detection
Fashion classification encompasses the identification of clothing items in an image. The field has applications in social media, e-commerce, and criminal law. In our work, we focus on four tasks within the fashion classification umbrella: (1) multiclass classification of clothing type; (2) clothing attribute classification; (3) clothing retrieval of nearest neighbors; and (4) clothing object de...
متن کاملMathematical model for dynamic cell formation in fast fashion apparel manufacturing stage
This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is val...
متن کاملFusing Hierarchical Convolutional Features for Human Body Segmentation and Clothing Fashion Classification
The clothing fashion reflects the common aesthetics that people share with each other in dressing. To recognize the fashion time of a clothing is meaningful for both an individual and the industry. In this paper, under the assumption that the clothing fashion changes year by year, the fashiontime recognition problem is mapped into a clothing-fashion classification problem. Specifically, a novel...
متن کاملDynamic Categorization of Semantics of Fashion Language: A Memetic Approach
Categories are not invariant. This paper attempts to explore the dynamic nature of semantic category, in particular, that of fashion language, based on the cognitive theory of Dawkins’ memetics, a new theory of cultural evolution. Semantic attributes of linguistic memes decrease or proliferate in replication and spreading, which involves a dynamic development of semantic category. More specific...
متن کامل